NEWS
2019.9
New paper in Nature Communications
Comparative genomics reveals the origin of fungal hyphae and multicellularity.
Kiss E, Hegedüs B, Virágh M, Varga T, Merényi Z, Kószó T, Bálint B, Prasanna AN, Krizsán K, Kocsubé S, Riquelme M, Takeshita N, Nagy LG.
Press release, Japanese
https://www.jst.go.jp/pr/info/info1390/index.html
2019.9
New paper in Anal Chem, Fungal Cells by Raman Hyperspectral Imaging
Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution-Alternating Least Squares.
Yasuda M, Takeshita N, Shigeto S.
2019.6
Visited Karlsruhe Institute of Technology (KIT), Institut Pasteur (Paris), Gerog-August-University Goettingen, and Max Planck Institute for terrestrial microbiology (Marburg) by JST lectureship
2019.4
Topics Award in JSBBA (Japan Society for Bioscience, Biotechnology and Agrochemistry) annual meeting at Tokyo for Momoka Kuchira and Mizuki Yasui
https://jsbba.bioweb.ne.jp/jsbba2019/index.php?btn2_move=on&topics=1
2019.4
Awarded Ohsumi Frontier Science Foundation
https://www.ofsf.or.jp/activity/02_result.html
2019.3
Attended to 30th Fungal Genetics Conference
Asilomar, CA, USA
http://conferences.genetics-gsa.org/Fungal/2019/index
2018.11
18th Fungal Genetics and Molecular Biology Conference
Nagaoka, Japan
Best Poster Award for Momoka Kuchira and Sayumi Fukuda
Industry Poster Award for Mizuki Yasui
2018.9
TGSW2018, Tsukuba Global Science Week, Tsukuba
Towards Microbial Control ver. 3.0
Best Poster Award for Gayan Dakshitha and Sayumi Fukuda
Excellent Poster Award for Tomoko Serizawa
2018.9
Symposium at
82nd Annual Meeting of the Botanical Society of Japan 植物学会, Hiroshima
22nd Yeast symposium 酵母合同シンポ, Fukuoka
70th Annual meeting of the Society for Biotechnology 生物工学会, Osaka
2018.8
Gram-positive bacterium genome function conference, Atami
Excellent Poster Award for Momoka Kuchira
2018.4
New review in Microbiol Mol Biol Reviews
Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R
2018.3
Attended to 14th ECFG
Haifa, Israel
http://www.ecfg14.org
2018.1
New paper in Science Advances
Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells.
Zhou L, Evangelinos M, Wernet V, Eckert A, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N
Press release
http://www.tsukuba.ac.jp/en/research-list/p201801250910
[Japanese]
http://www.tsukuba.ac.jp/attention-research/p201801250400.html
http://www.jst.go.jp/pr/announce/20180125-2/index.html
2018.1
New review in Fung Genet Biol
Oscillatory fungal cell growth.
Takeshita N
2017.12
Attended to ConBio2017
Kobe, Japan
http://www2.aeplan.co.jp/conbio2017/english/
2017.11
Attended to 17th Fungal Genetics and Molecular Biology Conference
Saga, Japan 糸状菌分子生物学コンファレンス
http://www.biosci.osakafu-u.ac.jp/fmbsj/english/
2017.11
16th Workshop of MIcrobiology
Tokyo Institute of Technology
Poster Award; Momoka Kuchira
http://www.res.titech.ac.jp/~biores/cn20/BIKEN.html
2017.10
Gave a lecture at Max Planck Institute for Terrestrial Microbiology
Marburg, Germany
2017.10
Visited Karlsruhe for the first time in a year
Germany
2017.08
Attended to XII International Fungal Biology Conference
Incheon, South Korea
http://ifbc2017.org/register/2017_01/main.html
2017.08
New paper in Mol Microbiol
Microtubule-organizing centers of Aspergillus nidulans are anchored at septa by a disordered protein.
Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R.
2017.06.18
Commentary on newspaper Nikkei, 日本経済新聞
http://www.nikkei.com/article/DGKKZO17751630W7A610C1MY1000/
2017.06
Awarded Japan Society For Molecular Biology of Filamentous Fungi Award for Young Scientists, 糸状菌遺伝子研究会奨励賞
http://fungi.mysterious.jp/MAIN-J/News.html
2017. 05
Press release of the new publication in PNAS.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=175296&CultureCode=en
[Japanese]
http://www.jst.go.jp/pr/announce/20170516-2/index.html
https://www.tsukuba.ac.jp/attention-research/p201705160400b.html
2017.03
Awarded JSBBA (Japan Society for Bioscience, Biotechnology and Agrochemistry) Award for Young Scientists, 日本農芸化学会奨励賞
http://www.jsbba.or.jp/about/awards/about_awards_encouragement.html
JAPANESE
Research
MOLD; FILAMENTOUS FUNGI
Mold is a microorganism that is widespread in the natural environment. Interestingly, by continuous growth of filamentous cells (mycelium), mold has developed into the largest creature identified on earth in Oregon, covering 965 hectares. Molds are believed to provide the largest variety and the largest volume of microbes in the soil. Fungi secrete a lot of enzymes and decompose organic matter during growth. This decomposer function is essential for materials circulation of ecosystem. For a long time, humans have made use of filamentous fungi in the production of fermented foods (sake, soy sauce, blue cheese, etc.) and, more recently, for the production of many useful enzymes and antibiotics in biotechnology. However, some fungal species can invade immunocompromised humans and agricultural crops, causing serious damage. Fungal pathogenicity is indeed a major problem in the medical and agricultural fields.
Our group analyzes the molecular mechanisms of mycelial elongation, the key process underlying both the usefulness and pathogenicity of mold. Filamentous fungi continuously extend the cell body at one end of their hyphae in a process called “tip growth”. Polar tip growth requires continuous transport of construction materials to and away from the hyphal tip. Proteins and other biomolecules are packaged in massive vesicles and transported over long distances by motor proteins along the actin and microtubule cytoskeletons.
Why polarity?
Cell polarity is essential for the proper function of many cell types, because the cell function is optimized by the cell shape, and the cell shape is determined by the cell polarity. Filamentous fungi grow by tip-extension. The mode of growth depends on stable polarity at the hyphal tip. How is the polarity regulated in filamentous fungi?
Why do filamentous fungi grow filamentous?
Cell end markes
We found landmark proteins named “cell end markers”, which control the polarity. The cell end markers, TeaA and TeaR, localize at hyphal tips interdependently. TeaA is delivered to hyphal tips by growing microtubules (MTs), anchored to the hyphal tip cortex though the interaction with TeaR, membrane associated TeaA receptor. TeaA at the tip indirectly interacts with the formin SepA which forms actin cables that are required for secretion vesicle transport and polarized growth. The teaA and teaR deletion mutants showed defects in polarity maintenance, which lead to curved or zig-zag growing hyphae. Thus TeaA transmits positional information regulated by MTs to the actin cytoskeleton at hyphal tips. The mechanism is required for the polarity maintenance and the growth direction of hyphae.
MT and plasma membrane
The interaction between MT plus end and the plasma membrane is important for the establishment and maintenance of polarity. MT plus-end localizing proteins (+TIPs) regulate MT plus-end dynamics. AlpA, a XMAP215 family protein and one of +TIPs, promotes MT growth and functions as MT polymerase. The functional connection between the cell end marker TeaA at the plasma membrane and AlpA at MT plus-ends is important for the proper regulation of MT growth at hyphal tips. In this way, we focus on the connection among MT plus ends, plasma membrane and actin cytoskeleton for polarized growth.
Visualization of membrane domains by super-resolution microscopy
Apical sterol-rich membrane domains (SRDs) are gaining attention for their important roles in polarized growth of filamentous fungi, however their exact figure, roles and formation mechanisms remain rather unclear. We selected genes involved in membrane recycle, raft formation and lipid transport, etc. We are investigating their roles of on the formation and maintenance of SRD and their interplay with the cytoskeletons.
The SRDs are revealed to be a mixture of lipid raft and non-raft microdomains, however the size of rafts is ranging between 10 and 200 nm and is thus too small to detect by conventional light microscopy which has a resolution limit of 250 nm. In recent years, super-resolution microscope techniques have been improving and breaking the diffraction limit of conventional light microscopy. One of the techniques is photoactivation localization microscopy (PALM) using photoswitchable (or photoactivatable) fluorophores. The lateral image resolution as high as 20 nm which can be acquired via this method will be a powerful tool to investigate the relation of lipid membrane domains and protein localization in living cells deeply. Size, number, distribution and dynamics of membrane domains, and dynamics of single molecules are subjects of our research. Additionally we are investing the MT and actin cytoskeleton, and their relation with membrane domains.
ENGLISH
Research
約38億年前に微生物が誕生しました。 現在、地球上に多くの生物が存在するのも、微生物が大きな地球環境の変動に適応し、進化と活動を続けてきた結果であると言えます。このような多様な微生物は地球上の至る所に存在し、我々の生活にも深く関与しています。我々の体内にいる微生物、農業・食に関与する微生物、我々をとりまく様々な環境にいる微生物、それらが我々の健康や食料、そして地球環境に深く関与しています。近年、それら多様な微生物群が他者(微生物、植物、動物など)と複雑でしなやかな相互作用を及ぼすことで、様々な機能を発揮することが明らかになってきています。
糸状菌(菌類、カビやキノコ、真菌)
菌類は一般に、キノコやカビのように菌糸や子実体(胞子形成のために作る複合的な構造)を形成する生活環を持つ糸状菌、酵母と呼ばれる単細胞性の生活環を持つ菌などの真核生物の総称です。真核生物が誕生して27億年と予想されていますが、菌類は生物界では動物界、植物界に並ぶ菌界に分類され、200-500万種も存在すると試算される巨大な生物群です。菌類にはさまざまな分類群が含まれ、非常に大きな形態的・生物学的多様性を示します。糸状菌は菌糸と呼ばれる細胞を伸ばし成長する微生物ですが、その菌糸を伸ばし続けた多細胞性のネットワークは、地球上の最大の生き物にもなります(注1)。ある程度菌糸を伸ばすと胞子を作り、胞子の散布により異なる環境で再び菌糸を伸ばし増殖を始めます。外部の有機物を利用する従属栄養生物であり、分解酵素を分泌して細胞外で養分を消化し、細胞表面から摂取します。
菌糸の伸長と分岐からなる多細胞性の菌糸体は、糸状菌の大きな特徴で、その養分吸収や病原性などに関わります。自然界では分解者として重要な役割を果たしており、生態系の物質循環に欠かせない存在です。特に土壌中では、糸状菌は最大体積の生き物であると考えられています。糸状菌は伸びる際に多くの酵素を出し有機物を分解します。その分解者としての役割は生態系の物質循環を制御しています。
糸状菌の中には、コウジカビのように伝統的な発酵食品(酒・醤油・味噌など)の生産に関わるものが、あります。近年では、様々な化合物(クエン酸、イタコン酸など)の生産に利用され、飲料食品や化学合成繊維・樹脂といったバイオ産業で利用されています。食品・飼料・洗剤工場などでは、糸状菌に作らせた様々な酵素を利用しています。植物系バイオマスを分解することでバイオエタノールの生産に関わるものなどもあります。このように糸状菌を利用した製品は、年間3000億円市場と言われており、私たちは知らないうちに(?)その恩恵を受けています。
一方で、免疫不全の人間に侵入し病原性を示す真菌症は、治療が困難で医学分野で大きな問題となっています。真菌(糸状菌、酵母)も人間と同じ真核生物であるため、副作用の低い治療薬が少ないのが現状です。また、植物病原菌の約80%が糸状菌であり、農作物の10%が毎年失われていると言われています。一方で、植物の根に接触し共生する菌(内生菌、菌根菌)は、土壌からリンや窒素源を植物に供給し、代わりに植物が光合成で生産した炭素のエネルギー源を得ることで生育します。これらの糸状菌は、植物が陸上に進出する際に植物を助けたと考えられており、植物の約80%が糸状菌と相互作用しています。
環境中で全ての生物が、他者と関わりあいながら生きています。糸状菌は他の細菌、糸状菌、虫、植物、動物と関わりあいながら、時に助け合い、時に戦いながら、共生と寄生を柔軟に選択して生きています。そこでコミュニケーションするための化合物として、ペニシリンのような抗生物質や医薬品の元となる生理活性物質(免疫抑制剤、抗がん剤、コレステロール低下剤;注2)を生産します。冬虫夏草などの漢方として古くから利用されているものもありますが、まだまだ未知の化合物が残されています。
私たちのグループでは、このような糸状菌の特性(有用性と病原性)をもたらす菌糸が伸びる分子機構を研究しています。また、糸状菌と他の生物(細菌、植物など)との相互作用について研究し、生態系での役割を明らかにしようとしています。
最新のテクノロジーで、最高のサイエンスに挑戦し、世界に発信します。
菌糸が伸びる仕組み
https://www.jstage.jst.go.jp/article/kagakutoseibutsu/51/12/51_809/_pdf
(注1)世界最大の生き物は菌類; 1998年にアメリカ、オレゴン州の東部で発見されたキシメジ科のキノコ、オニナラタケ(Armillaria ostoyae)の菌床は、総面積8.9平方キロメートルに及び、推定重量はおよそ600t、推定年齢は約2400歳といわれています。キノコもカビの仲間で、土や木の中に菌糸を作り生長します。地表に出ている胞子を作る器官(子実体)が、キノコと呼ばれるものです。
(注2)スタチン;コレステロール合成に関わる酵素の阻害剤で、Pfizer社のリピトールは世界で最も売れている薬で、2008年の売上高は1兆2000億円です。
Publications
Selected publications (Corresponding author *)
- Comparative genomics reveals the origin of fungal hyphae and multicellularity.

Kiss E, Hegedüs B, Virágh M, Varga T, Merényi Z, Kószó T, Bálint B, Prasanna AN, Krizsán K, Kocsubé S, Riquelme M, Takeshita N, Nagy LG.
Nature Communications. 10(1):4080 (2019)
- Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells.

Zhou L, Evangelinos M, Wernet V, Eckert A, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N*
Science Advances. 4 (1), e1701798 (2018)
- Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension.

Takeshita N*, Evangelinos M, Zhou L, Serizawa T, Somera-Fajardo RA, Lu L, Takaya N, Nienhaus GU, Fischer R.
PNAS. 114 (22), 5701-5706 (2017)
- Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth.

Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N*.
Science Advances. 1(10), e1500947 (2015)
- The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance.

Takeshita N*, Mania D, Herrero S, Ishitsuka Y, Nienhaus GU, Podolski M, Howard J, Fischer R.
J Cell Sci. 126, 5400-11 (2013)
- Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans.

Takeshita N, Higashitsuji Y, Konzack S, Fischer R.
Mol Biol Cell. 19(1), 339-51 (2008)
- CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans.

Takeshita N, Ohta A, Horiuchi H.
Mol Biol Cell. 16(4), 1961-70 (2005)
Review
- Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures.
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N and Fischer R
Microbiol. Mol. Biol. Rev. 82(2), e00068-17 (2018)
- Oscillatory fungal cell growth.

Takeshita N*.
Fungal Genet Biol. 110, 10-14 (2018)
- Coordinated process of polarized growth in filamentous fungi.

Takeshita N*.
Biosci Biotechnol Biochem. 80(9), 1693-9 (2016)
- Interdependence of the actin and the microtubule cytoskeleton during fungal growth.

Takeshita N*, Manck R, Grün N, de Vega SH, Fischer R.
Curr Opin Microbiol. 20, 34-41 (2014)
- Polarized growth in fungi--interplay between the cytoskeleton, positional markers and membrane domains.

Fischer R, Zekert N, Takeshita N*.
Mol Microbiol. 68(4), 813-26 (2008)
Complete publication list
https://www.ncbi.nlm.nih.gov/pubmed/?term=norio+takeshita
Research Gate
https://www.researchgate.net/profile/Norio_Takeshita
Books
- Takeshita N, Fischer R.
The cytoskeleton and cell-end markers during polarized growth of filamentous fungi.
Mycota VII 3rd edition, Springer (2018)
- Etxebeste O, Takeshita N.
Advanced microscopy methods for the study of protein localization, interaction and dynamics in filamentous fungi.
Advanced Microscopy in Mycology, Springer (2015)
- Fischer R, Takeshita N, Doonan J.
Cytoskeleton, Polarized Growth, and the Cell Cycle in Aspergillus nidulans.
The Aspegilli: Genomics, Medical Applications, Biotechnology, and Research Methods (2007)
About

Norio Takeshita PhD
University of Tsukuba
Faculty of Life and Environmental Sciences
Microbiology Research Center for Sustainability (MiCS)
e-mail: takeshita.norio.gf@u.tsukuba.ac.jp
Career
2019.4 -
Associate Professor
University of Tsukuba
Faculty of Life and Environmental Sciences
Microbiology Research Center for Sustainability (MiCS)
2014.7 - 2019.3
International Tenure Assistant Professor
University of Tsukuba
Faculty of Life and Environmental Sciences
2016.10 -
Group leader
JST ERATO Nomura project, Genome biochemistry group
2011.10 – 2016.9
Group leader
Karlsruhe Institute of Technology (KIT)
Applied Bioscience, Dept. Microbiology
2008.4 - 2011.9
Research Associate
Karlsruhe Institute of Technology (KIT)
Applied Bioscience, Dept. Microbiology
2006.4 - 2008.3
Postdoc fellow of Alexander von Humboldt Foundation
University of Karlsruhe
Applied Bioscience, Dept. Microbiology
Education
2003.4 - 2006.3
Ph.D.
The University of Tokyo
Graduate school of agricultural and life science, Dept. Biotechnology
2001.4 - 2003.3
Master
The University of Tokyo
Graduate school of agricultural and life science, Dept. Biotechnology
1997.4 - 2001.3
Bachelor
The University of Tokyo, Faculty of agriculture, Dept. Biotechnology
Funding
DFG, Landesstiftung Baden Württemberg, Humboldt Society
JSPS, JST
Editorial board
Fungal Genetics Biology
Fungal Biology Biotechnology
Awards
2017. Japan Society For Molecular Biology of Filamentous Fungi Award for Young Scientists (糸状菌遺伝子研究会奨励賞)
2017. JSBBA Award for Young Scientists (日本農芸化学会奨励賞)
2012. Elite program member of Baden-Wurttemberg Foundation
Fellowship
2006 - 2008
Fellowship of the Alexander von Humboldt Foundation
2004 - 2006
Research Fellowships of Japan Society for the Dissertation of Science (JSPS) for Young Scientists (DC2)
Oral presentation at international conference
2019, Oct |
Asia Mycology Conference, Tsu, Japan |
2019, Mar |
30th Fungal Genetics Conference, Asilomar, USA |
2018, Mar |
14th Europian Conference on Fungal Genetics, Haifa, Israel |
2017, Aug |
XII International Fungal Biology Conference, Incheon, South Korea |
2016, Apr |
13th Europian Conference on Fungal Genetics, Paris, France |
2016, Mar |
VAAM annual congress, Jena, Germany |
2015, Oct |
Molecular Biology of Fungi, Berlin, Germany |
2015, Sept |
Membrane Compartmentalization, Munster, Germany |
2015, Mar |
28th Fungal Genetics Conference, Asilomar, USA |
2014, Mar |
12th Europian Conference on Fungal Genetics, Seville, Spain |
2013, Oct |
XI International Fungal Biology Conference, Karlsruhe, Germany |
2013, Mar |
27th Fungal Genetics Conference, Asilomar, USA |
2012, Oct |
Eurofung meeting 2012, Berlin, Gemany |
2012, May |
Workshop DFG-CONACyT Research Unit 1334, Mexico city, Mexico |
2012, Mar |
11th European Conference on Fungal Genetics, Marburg, Germany |
2011, Mar |
26th Fungal Genetics Conference, Asilomar, USA |
2011, Sept |
VAAM Symposium, Molecular Biology of Fungi, Marburg, Germany |
2009, Nov |
Eurofung meeting 2009, Wageningen, Netherlands |
2009, Mar |
25th Fungal Genetics Conference, Asilomar, USA |
2008, Oct |
Eurofung meeting, San Feliu de Guixols, Spain |
2008, Mar |
9th European Conference on Fungal Genetics, Edinburgh, Scottland |
2007, Sept |
VAAM Symposium, Molecular Biology of Fungi, Hamburg, Germany |
2007, May |
Eurofung meeting 2007, Wageningen, Netherlands |
2007, Mar |
24th Fungal Genetics Conference, Asilomar, USA |
Invited lecture
2019, Nov |
Hokkaido University, Physical Ethology Lab |
2019, Sep |
Tsukuba University at Sugadaira, Lab of Mycology |
2019, Jun |
Max Planck Institute for terrestrial microbiology (Marburg) |
2019, Jun |
Gerog-August-University Goettingen |
2019, Jun |
Institut Pasteur (Paris) |
2019, Jun |
Karlsruhe Institute of Technology (KIT) |
2019, Apr |
RIKEN yokohama, iSYM |
2019, Apr |
AIST, National Institute of Advanced Industrial Science and Technology |
2018, Apr |
Agricultural and Life Science, The University of Tokyo |
2017, Dec |
Faculty of Agriculture, Yamaguchi University |
2017, Nov |
Faculty of Agriculture, Kyushu University |
2017, Oct |
Max Planck Institute for Terrestrial Microbiology, Marburg |
2017, Jul |
ITbM, Nagoya University |
2016, Jan |
Agricultural and Life Science, The University of Tokyo |
2015, Nov |
Faculty of Life and Environmental Sciences, University of Tsukuba |
2015, Oct |
Institute of Applied Physics, Karlsruhe Institute of Technology |
2015, Sept |
Cell Networks-Cluster of Excellence and Centre, University of Heidelberg |
2015, Jan |
Institute for Microbiology and Genetics, Georg August University of Goettingen |
2014, Nov |
Faculty of Agriculture, Kyoto University |
2014, Nov |
Faculty of Agriculture, Tohoku University |
2014, Apr |
Kyoto Prefectural University |
2014, Apr |
National Research Institute of Brewing |
2013, Dec |
Bioagricultural and Life Sciences, Nagoya University |
2013, Dec |
Agricultural and Life Science, The University of Tokyo |
2013, Mar |
Stanford University School of Medicine |
2013, Mar |
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden |
Symposium at domestic conference
2019, 11 東工大 |
酵素工学研究会 第82回講演会 |
2019, 7 東京 |
微生物ウィーク2019 令和新時代における糸状菌・酵母研究の挑戦 |
2019, 5 秋田 |
日本菌学会 菌類の進化と共生と成長ダイナミクス |
2018, 9 広島 |
日本植物学会 細胞の極性成長を支える分子メカニズムの共通性と独自性 |
2018, 9 九州大 |
酵母合同シンポジウム アジアへのゲートウェイ九州から発信する酵母の魅力 |
2018, 9 関西大 |
日本生物工学会 真核微生物におけるシグナル伝達と代謝の接点を探る |
2018, 6 東農大 |
醤油研究発表会 蛍光ライブイメージングで「観る」糸状菌の菌糸生長 |
2018, 3 名古屋 |
農芸化学会2018 先進解析技術が拓く糸状菌研究 |
2017, 12 東大 |
第3回関東支部例会 微生物・植物の機能とメカニズムに迫る |
2017, 11 佐賀 |
第17回糸状菌分子生物学コンファレンス 糸状菌の特徴解明の最前線:基礎から病原性,産業利用まで |
Members
M2 | Tomoko Serizawa | s1821113[at]s.tsukuba.ac.jp |
Tip growth & calcium signal |
M2 | Momoka Kuchira |
s1821097[at]s.tsukuba.ac.jp |
Fungal-bacterial interaction |
M2 | Mizuki Yasui |
s1821158[at]s.tsukuba.ac.jp |
Fungal growth into steamed rice |
M2 | Gayan Dakshitha |
s1830197[at]s.tsukuba.ac.jp |
Screening of antibiotics |
M1 | Sayumi Fukuda |
s1510718[at]u.tsukuba.ac.jp |
Super resolution imaging & microfluidic device |
B4 | Gamon Kudo |
s1610664[at]u.tsukuba.ac.jp |
Ecological microbe interaction |
Links
Univ. of Tsukuba, Microbiology Research Center for Sustainability (MiCS)
筑波大学 微生物サステイナビリティ研究センター(MiCS)
https://www.mics.tsukuba.ac.jp
Univ. of Tsukuba, Prof. Naoki Takaya
筑波大学 負荷適応研究室(高谷直樹 教授)
https://tsukuba-microbes.com/takaya/
ERATO NOMURA Microbial Community Control Project
ERATO野村集団微生物制御プロジェクト
http://www.jst.go.jp/erato/nomura/en/index.html
Microscopes
http://www.jst.go.jp/erato/nomura/en/facility.html
Univ. of Tsukuba, Fungal Interaction and Molecular Biology, Ass. Prof. Daisuke Hagiwara
筑波大学 糸状菌相互応答講座(萩原 大祐 准教授)
http://tsukuba-fungal-interaction.jp
Univ. of Tsukuba, Research center for sustainability and microbiology
筑波大学 プレ戦略イニシアティブ 微生物サステイナビリティ研究拠点
https://Tsukuba-microbes.com/presen/
International tenure at Univ. of Tsukuba
http://ura.sec.tsukuba.ac.jp/archives/category/tenure-track/takeshita-nori
My group at KIT
http://www.iab.kit.edu/polarity/
R. Fischer at KIT
http://www.iab.kit.edu/microbio/489.php
GU. Nienhaus at KIT
http://www.aph.kit.edu/nienhaus/english/
Fungal Molecular Biology Society of Japan
糸状菌分子生物学研究会
http://www.biosci.osakafu-u.ac.jp/fmbsj/english/
Japan Society For Molecular Biology of Filamentous Fungi 糸状菌遺伝子研究会
http://fungi.mysterious.jp/MAIN-J/Welcome.html
JSBBA; Japan Society for Bioscience, Biotechnology, and Agrochemistry 日本農芸化学会
http://www.jsbba.or.jp/e/
JAPANESE
Contact
Norio Takeshita PhD
University of Tsukuba, Faculty of Life and Environmental Sciences,
Laboratory of Advanced Research A, 515
Tennodai 1-1-1, Tsukuba, 305-8572, Japan.
Tel: +81-29-853-6782 / 7191
e-mail: takeshita.norio.gf@u.tsukuba.ac.jp
Highly motivated and productive postgraduate research candidates are welcome to work with us.
Email a statement of your research interest with your recently updated CV and academic transcript.
Prospective candidates are encouraged to apply for MEXT (Monbukagakusho Japanese government scholarship) for financial support.
ENGLISH
Contact
竹下 典男
筑波大学生命環境系
305-8577
茨城県つくば市天王台1-1-1
筑波大学総合研究棟A 515
電話:029-853-6782 / 7191
e-mail: takeshita.norio.gf@u.tsukuba.ac.jp
研究グループへの参加(修士、博士、ポスドク)、共同研究、あらゆる可能性がオープンです。随時、連絡をお待ちしています。